Published (or prepared for publication) in a press the author’s articles on the theory of NURBS curves and surfaces / Опубликованные (или подготовленные к публикации) в печати статьи автора по теории NURBS кривых и поверхноcтей
Published (or prepared for publication) in the press articles on the application of the Program in Applied CAD / Опубликованные (или подготовленные к публикации) в печати статьи по применению Программы в прикладных САПР
В статье приводятся результаты дальнейшего улучшения метода v-кривых для моделирования кривых высокого качества. Метод построения v-кривых является развитием методов инженерного моделирования обводов кривыми второго порядка (К2П) и нелинейных сплайнов на базе теории параметризации определителей с применением принципа уплотнения спецификации геометрических определителей. В общем случае моделируемая кривая не имеет кусочно-аналитического выражения (не является сплайном). Такого рода кривые названы виртуальными кривыми (или v-кривыми). В статье для точной аппроксимации v-кривой и генерации точек v-кривой с заданным законом изменения кривизны предлагаются две схемы аппроксимации v-кривой и генерации точек v-кривой. Первая схема используется при малых отклонениях участков моделируемой кривой от природы кривых второго порядка. Схема заключается в повышении степени дуги К2П в формате квадратичной NURBS кривой, определенной в соприкасающемся треугольнике между двумя дважды соприкасающимися К2П, до 3-й степени и уточнении весовых коэффициентов дуги кубической NURBS формате представления Безье (NURBzS) по значениям кривизны смежных соприкасающихся К2П. Вторая схема используется на участках с резким изменением кривизны и параметров соприкасающихся К2П (в частности, на участках перехода кривой на нулевую кривизну). Схема заключается в подборе конфигурации b-полигона кубической кривой Безье, удовлетворяющей соотношению заданных значений кривизны в граничных точках дуги, и уточнении весовых коэффициентов дуги кубической NURBzS по значениям кривизны смежных соприкасающихся К2П Для моделирования пространственных кривых на основе метода v-кривых для обеспечения непрерывности крутки автором предлагается адаптация метода, основанная на повышении степени NURBzS кривой и приведении смежных троек вершин b-полигонов смежных дуг кривой к одной плоскости. В статье приводятся все необходимые расчетные формулы для реализации метода v-кривых на компьютере: формулы и алгоритмы определения точек, касательных векторов и кривизны, формулы повышения степени NURBzS кривых произвольных степеней. Автором разработаны оригинальные схемы расчета дифференциальных характеристик NURBzS кривых произвольных степеней, основанные на BZ-алгоритме вычисления точки, дифференциальных характеристик и уплотнения спецификации кривой Безье.