Before performing the every script, create a new drawing from a template acad.dwt.
Download s_init_acad.lsp.
Run the script.
Перед выполнением каждого скрипта, создайте новый чертеж с шаблоном acad.dwt.
Загрузите приложение s_init_acad.lsp.
Запустите скрипт.
1.1. Crt_UV_Loft_Part_Tor_i (ver 2012-2014).scr
Script demonstrates the creation on 3D Mesh of net of curves of high quality and creation on net of curves the standard Lofted Surface.
AutoCAD method of modeling the Lofted Surface not creates the surface of high quality.
1.1. Сценарий Crt_UV_Loft_Part_Tor_i демонстрирует пример построения_LoftedSurface поверхности на сети точек, снятых
неравномерно с торовой поверхности.
2.1. Crt_UV_Nurbzs_Part_Tor_i (ver 2012-2014).scr
Script demonstrates the creation on 3D Mesh of net of curves of high quality and creation on net of curves the NURBzS surface of high
quality.
Method of modeling the NURBzS surface creates the surface of high quality. In this example the surface geometrically exactly
approximates the part of torus.
2.1. Сценарий Crt_UV_Nurbzs_Part_Tor_i демонстрирует пример построения бикубичесой NURBZS поверхности на сети точек,
снятых неравномерно с торовой поверхности. .
2.2. Crt_Nurbzs_Arch Izo 0 (ver 2012-2014).scr
Script shows an example of modeling of a bicubic NURBzS surface without the control of geometrical similarity over a network of points
3 * 3, modelling complex surface of type of the architectural form. Boundary polylines of lines and columns have various forms on a
horizontal projection. Average polylines of lines and columns rectilinear. The program under script Crt_Nurbzs_Arch Izo 0.scr creates a cubic
surface with an option of isogeometrical definiteness = 0. Forms a network of points on the constructed surface. Shows occurrence of
oscillating parametrical lines on a horizontal projection.
2.2. Скрипт Crt_Nurbzs_Arch Izo 0 демонстрирует пример построения бикубической NURBzS поверхности без контроля
изогеометричности на сети точек 3 х 3, моделирующую сложную поверхность типа архитектурной формы.
2.3. Crt_Nurbzs_ArchIzo2 (ver 2012-2014).scr
Script creates a surface on the same network of points that was used in the previous script Crt_Nurbzs_Arch Izo 0. Creates bicubic
NURBzS a surface with an option of isogeometrical definiteness, equal 2. Forms a interpolated network of points on the constructed surface.
The form of a interpolated network shows geometrical definiteness NURBzS of a surface on a horizontal projection. The option of geometrical
definiteness equal 2 is recommended to be used for strict geometrical definiteness of surfaces of 1-st order of smoothness on networks of
points with rectilinear forming networks, flat sites of a network. Provides strict geometrical definiteness, exact approximation through points
and 1-st order of smoothness. Generally the network of v-curves created on a network of points, is not kept in a surface.
2.3. Сценарий Crt_Nurbzs_Arch Izo 2 показывает пример построения бикубической NURBZS поверхности с использованием опции
строгой изогеометричности, равной 2.
3.1. Crt_Bsp_Klein55 (ver 2012-2014).scr
Script demonstrates the method for constructing the integrated surfaces of complex topology. In this example script constructs the one
sided surface as bottle of Klein. The NURBS surface is constructed on s-frame of float format.
Shows a network of lines of a surface. Subdivides a s-mesh. Shows a network of curves on a surface. Interpolates a surface. Forms object
3d Mesh. Renders the object. The surface is everywhere of order G44 of smoothness.
3.1. Crt_Bsp_Klein55 (ver 2015).scr
Script demonstrates the method for constructing the integrated surfaces of complex topology. In this example script constructs the
one-sided surface as bottle of Klein.
Script draws a s-mesh. The bidimentional file of points of a s-mesh is formed definitely for maintenance of closing of a surface and the
identical order of smoothness G44 in any point of a surface, including points on lines of closing of a surface. Defines b-spline surface of
degrees (5,5) on a s-frame.
Constructed surface is converted to primitive Surface of AutoCAD 2015 through IGS-format.
3.1. Сценарий Crt_Bsp_Klein 5 5 демонстрирует пример формирования b-сплайновой поверхности степеней (5,5) вда
односторонней поверхности "бутылки Клейна" на s-многограннике.
3.2. Crt_Bsp_Tornado_i (ver 2012-2014).scr
Script shows b-spline surface modeling an external surface of "tornado". Script Crt_Bsp_Screw_i.scr draws the closed line on a circle
with non-uniform distribution of points. Forms a network of points by copying an initial polyline. Copies rise on axis Z, rotate around of axis Z
and are scaled. Forms a set v-curves on a network of points. V-curves geometrically precisely model circles. Creates on a set of v-curves a set of
forming curves. Forming b-spline curves keep high quality of v-curves (see script Crt_BSp_Vcrv.scr). Creates directing v-curves on a set of s-
polygons of forming b-curves. Creates directing b-spline curves on a set of directing v-curves. Directing b-spline curves keep smoothness of
curvature of v-curves and improve smoothness of torsion of spatial curves (see script Crt_Spt_Bsp.scr, Crt_Spiral_Bsp). Creates b-spline surface
with a s-mesh. Shows a map of sign of Gauss curvature on to b-spline surface. The boundary line of zones of constant sign of Gauss curvature
is ideally smooth line without a sinuosity.
3.2. Сценарий Crt_Bsp_Tornado_i демонстрирует построение b-сплайновой поверхности, моделирующей внешнюю поверхность
"смерча".
3.3. Edt_Clth_Srf (ver 2012-2014).scr
Script shows an example of modeling the working surface of a "paw" of a cultivator.
Script creates a site clothoid spiral. Approximates a curve. Forms a set of b-spline curves copying of an initial curve. Creates b-spline
surface with a s-mesh. Edits b-spline surface by means of deformation in incremental mode.
3.3. Видео ролик Edt_Clth_Srf демонстрирует пример моделирования лапы культиватора по сценарию.
4.1. Crt_Nurbs_Arch (ver 2012-2014).scr
Script shows an example of modeling the surface - type of architectural form, given by boundary curves - circular arcs. The script
Crt_Nurbs_Arch.scr creates 4 NURBS curves 8th degree, geometrically accurate approximate circles. On the horizontal projection of the curves
have different shapes. Then the script under Coons's formula generates s-mesh of 4 s-polygons of boundary curves. Edits directing NURBS
curves of a surface to eliminate oscillations of isoparametrical line and providing shape preserving certainty of NURBS surfaces on the
horizontal projection.
4.1. Сценарий Crt_Nurbs_Arch демонстрирует пример моделирования и редактирования поверхности типа архитектурной
формы, заданной граничными кривыми - дугами окружностей.
4.2. Crt_NURBS_Torus (ver 2012-2014).scr
Script shows an example of geometrically exact modeling of a surface of torus. Script Crt_Nurbs_Torus.scr creates NURBS a curve of 8-th
degree geometrically precisely approximating circle. Forms set of NURBS curves copying of an initial curve. Edits NURBS curves of a set. Forms
NURBS a surface on set of NURBS curves.
4.2. Сценарий Crt_Nurbs_Torus демонстрирует пример геометрически точного моделирования поверхности тора.
4.3. Crt_Sphere_Nurbs (ver 2012-2014).scr
Script shows an example of geometrically exact modeling of a surface of sphere. Script Crt_Sphere_Nurbs.scr creates NURBS a curve of
8-th degree geometrically precisely approximating circle. Forms set of NURBS curves copying of an initial curve. Edits NURBS curves of a set.
Forms NURBS a surface on set of NURBS curves.
4.3. Сценарий Crt_Sphere_Nurb демонстрирует пример геометрически точного моделирования поверхности сферы.